High-flux hard X-ray microbeam using a single-bounce capillary with doubly focused undulator beam
نویسندگان
چکیده
A pre-focused X-ray beam at 12 keV and 9 keV has been used to illuminate a single-bounce capillary in order to generate a high-flux X-ray microbeam. The BioCAT undulator X-ray beamline 18ID at the Advanced Photon Source was used to generate the pre-focused beam containing 1.2 x 10(13) photons s(-1) using a sagittal-focusing double-crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre-focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre-focused beam (;in-line') and (ii) where one side of the capillary was aligned with the beam (;off-line'). The latter arrangement delivered more flux (3.3 x 10(12) photons s(-1)) and smaller spot sizes (< or =10 microm FWHM in both directions) for a photon flux density of 4.2 x 10(10) photons s(-1) microm(-2). The combination of the beamline main optics with a large-working-distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer-size X-ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm(-2). Micro-XANES experiments are also feasible using this combined optical arrangement.
منابع مشابه
Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures
A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10μm and ultimate angular resolution of 14μrad. The microbeam was used to analys...
متن کاملGeneration of an X-ray microbeam for spectromicroscopy at SPring-8 BL39XU.
A pair of elliptical mirrors (KB mirror) was designed and fabricated to realize an energy tunable x-ray microbeam for spectromicroscopy at SPring-8 BL39XU. As is commonly recognized, the obtainable beam size with the aspherical total reflection mirrors is strongly affected with the slope error of the mirror. Considering that the extremely high brilliance of the undulator radiation from the SPri...
متن کاملTwo-step hard X-ray focusing combining Fresnel zone plate and single-bounce ellipsoidal capillary.
A two-step focusing set-up combining a Fresnel zone plate with an ellipsoidal capillary is presented. It is shown that, in addition to the anticipated gain in flux, the employment of the prefocusing micro-optic makes optimal use of the elliptical shape of the capillary by almost eliminating aberrations. A small cross section of the prefocused beam allows a tiny fraction of the capillary surface...
متن کاملA Fixed Angle Double Mirror Filter for Preparing a Pink Undulator Beam at the Advanced Photon Source
Recent advances in X-ray Photon Correlation Spectroscopy (XPCS) use the full bandwidth of an undulator harmonic in order to maximize the coherent flux for small angle X-ray scattering experiments. X-ray mirrors and filters are typically used to select a given harmonic of the spectrum. At the University of Michigan/Howard University/Lucent Technologies, Bell Labs, Collaborative Access Team (MHAT...
متن کاملHard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination
An optical system for illumination of object in x-ray imaging microscopy is developed. The optical system is a beam condenser consisting of a single-bounce conical-shape mono-capillary (x-ray guide tube: XGT) made of Pyrex glass. The XGT condenser was tested at the beam line 47XU of SPring-8 using a Fresnel zone plate as an objective lens. Comparing with the microscope without beam condenser, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Synchrotron Radiation
دوره 16 شماره
صفحات -
تاریخ انتشار 2009